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Diffusion-like solutions of the Schrodinger equation for a 
time-dependent potential well 

Albert0 Devotot and Bojan PomoriSact 
t Dipanimento di Scienze Fisiche, Universiti di Cagliari and lstituto Nazionale di Fisica 
Nucleare, Sezione di Cagliari, Via Ada Negri 18, 1-09127 Cagliari, Italy 
$Department of Chemistry and Physics, Salem State College, Salem, MA 01970, USA 

Abstrset. We discuss a method of solution of the time-dependent SchrGdinger equation 
for a time-dependent potential well. We obtain a simple solution far a well changing 
linearly with time and a solution for a well changing as the square root of time and as the 
square root of second degree polynomial in 1. T h e  quasi-energy spectra of these solutions 
are c"?inuouil We use of the sol~tions found to check the validity of the adiabatic 
approximation. 

In the present work we study the quantum problem of a particle in a time-dependent 
square well with rigid walls. This is a prototype of a problem in which all the 
complications are introduced by the boundary conditions, while the equation without 
boundary conditions is readily solvable. One would like to solve the equation 

subject to the boundary conditions 

Y ( L ( f ) / 2 ,  t )  = Y ( - L ( t ) / Z ,  1 )  = 0. (2) 

Both walls of the well oscillate symmetrically about x = 0 and parity is a good quantum 
number. It is straightforward to show using (1) and (2) that the norm of the solution 
of (1) is constant. Henceforth we will ignore the normalization constant. 

One can readily write a solution to equation (1) without boundary conditions using 
the Fourier iransform: ' I  

Y ( x ,  r ) =  exp[i(ku-fik2r/2m)]g(k) dk. (3) J 
Here we assume that all the integrals in the expression for 'P and aW/ar, a2Y/ax2 exist. 
The nature of g(k) determines the quasi-energy spectrum (i.e. the spectrum of the 
evolution operator)-the delta function singularities (or poles in the complex k integra- 
tion plane) correspond to the discrete spectrum, while the integration over continuous 
k corresponds to continuous spectrum. With appropriate integration, even (odd) 
functions of x are automatically obtained using an even (odd) g(k). 
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242 A Devofo and B PomoriSac 

One can write the solution of (1) in a different form; one can use the analogy 
between the Schrodinger equation and the diffusion equation [l] and, using the usual 
solution of the diffusion equation [Z], write the solution of (1) in the form 

*(x, i) - I/& exp [;:'I - - t>o  

or more generally 

dx, d f, 1 
(4) 

Here we assume that the function f is restricting the integral over 1, to the region I,< t, 

so that the integral of the appropriate derivatives exists. Note that for any solution of 
(1) T(x,  I),  the integral over 1, and x, of Y(x-xo, 1 -  I,,) with an appropriate weight 
function is also a solution. Let us rewrite the solution (3) in a form similar to (4). 

wavefunction of fixed energy: 
Consider, for exmp!., the fixed pQ!en!iz! we!! L!!! = Lo = COnstI"! znd I n  CVC" 

-. 

jexp(i  g) 1-1 dk exp( -i g) 
) ( mx 2 n + l r ) ]  

r + S  k---- 
hf Lo 

=cos( L, 2 n + l  r x )  exp [ -i hf (7 2 n + l  r ) ' ]  

The same solution can be obtained integrating 

over an appropriate contour in the complex k plane (for positive f the contour goes 
above the poles over the negative real k axis, below all poles except the nth pole over 
the positive real k axis, over the imaginary k axis and the contour is closed over 
negative Im(k) for positive Re(k), and over positive Im(k) for negative Re(k)). The 
delta functions in ( 5 )  represent only the pole contribution of the integral of the type 

the complex k plane integral, e.g. the integral over imaginary k = iy, 
( 3 )  and we see that the quasi-energy spectrum is discrete, of course, a!! the parts of 

are solutions of (1); however, the pole contributions give the solutions satisfying the 
boundary conditions (2). 

To rewrite the solutions (3) in a form analogous to (4), we assume that the function 
g(k) is analytic in a neighbourhood of k = 0 (the case where this is not true is discussed 
later) and write 

Y(x, t ) =  j-:g(k) exp( -i 2m 

1-i  
2 

-_ - g(-iJ/dx) f i e x p ( i $ ) .  
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Here it is assumed that the integral in (3) is over the whole real k axis, and the integral 
becomes the usual Fresnel integral. In this case the solutions of the form (3) are 
obtained by a particular combination of derivatives with respect to x of the diffusion-like 
solution (4). Of course, every derivative of a solution of (1) is also a solution. The 
function g(-iJ/Jx) is defined through a power series. The boundary conditions (2) read 

g(-2iJ/JL) \ E e x p ( i r - j  m L 2 ( t )  = O .  
V f i f  \ 2 f i f  4 J 

(7) 

If the function g(k) has a power series expansion 

where p ( t ) - w ;  (the boundary condition at x =  - L ( f ) / 2  leads to a similar 
equation). Tie soiuiion of (8) is a non-iriviai probiem, the equaiion is an identity with 
respect to the variable 1. This equation can be solved if L( 1 )  is a linear function of t 
using the generating function for the Hennite polynomials; however it is instructive 
to solve this case directly from (3) and (2): 

tm 

e x p ( i k L ( t ) / 2 - i f i t k 2 / 2 m ) g ( k )  dk 

= 1-1 exp [ ik( Lo+ af) /2  - i - kZ g( k )  dk 
2m I 

+ l - r e x p [  -ik( Lo+af)/2-i 
2m ( 9 )  

where L ( t )  is assumed to be a linear function, and g ( k )  is assumed even-the case of 
odd g ( k )  is analogous. We can perform an inverse Fourier transform with respect to 
time multiplying by exp(-iwf) and integrating over df, using 

where xi's are the zeros off  (x); after some manipulation we obtain 

where y is a variable depending on o. It is easy to solve this equation for L,=O (the 
more generz! case i s  the- nbtained wi!h a change ofvariab!e frnm x !n x -xo). !n :!% 
case, the function g(ma/2h+y),  an even function of the whole argument, is an odd 
function of y. There is an infinite number of solutions 
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which enables us to perform the integral in (3 )  and, shifting f into t i t , ,  one obtains 
the solution of (1): 

A Devofo and B PomoriSac 

It can be verified that this is the solution of (1) by direct substitution of (11) into (1). 
Here n is an arbitrary integer, and it is obvious that the boundary Conditions P = 0 
for x = i a ( t +  t 0 ) /2  are satisfied. The analogous odd wavefunction is of the form 

where n is again an arbitrary integer. Different initial conditions can be fitted by taking 
linear combinations of P, and Po with different n’s. One can also shift x into x-x, 
in (11) and ( I l a )  to obtain functions satisfying asymmetric boundary conditions at 
x = xpf a( f + f 0 ) / 2 .  A similar solution has been found by different methods by Doescher 
and Rice [3]. 

Analogously one can solve the three-dimensional spherically symmetric well with 
the boundary conditions: *( ,=a t ,  8, 4 )  = O .  It can be shown that the radial part of 
the wavefunction is given by 

I 
R,(r,f)=-exp 

r J i  

where the function f;(z) satisfies the equation 

f X z ) - I ( I +  I)f,(Z)/Z’+f;(Z) = o  
that is,J(z) is z times the spherical Bessel function y,, and the constant S is determined 
by the condition J(m6alh)  = O .  

Let us now discuss the case where the function g(k)  is not analytic at k = 0. Assume, 
for example, that the function is of the form k“q5(k) where +(k) is analytic at zero. 
Looking at  the form ofthe integral k”-l exp(-pk2- yk) dk  [4] (with p with a positive 
real part) suggests a trial solution of (1) of the form 

V ( x ,  f ) =  exp(-qx2/f)Dhx/\/Tir)  

where the D, are parabolic cylinder functions [5]. Replacing this form in (1) and 
shifting the variables x and f one finds the following solution: 

where the functions y.(z) are: D,(z), Du(-z), D-u-l(iz), D---’(-iz), and their linear 
combinations (conveniently, one may choose even or odd combinations). Here, one 
chooses Y so as to fit a particular boundary condition; for example to fit a condition 

V(x = x,+ Jih( t - to ) /  m,  I )  = 0 

one may choose Y = 2 for an even function. We see that the function that describes a 
potential well changing as the square root of f is considerably more complicated than 
the linearly changing well (11). In addition to shifting x into x-xu, integrating Over 
xo and I, with a suitably chosen weight function, differentiating with respect to  X 

(differentiation with respect to f is proportional to repeated x differentiation), one can 
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create new solutions of (1)  by integrating and differentiating with respect to v. For 
example, differentiation with respect to Y of (13) will produce a solution of the form 
(3)  with g(k) having a logarithmic singularity at zero. 

Note that the explicit solutions (i.e. (11)  and (13)) that we discussed arise from 
integration over continuous k, these solutions therefore, as expected, have a continuous 
quasi-energy spectrum, in contrast to (5). 

However, in all the ways of modification of solutions of (1)  that we mentioned, 
there is not a single one that transforms the boundary conditions in a simple way. One 
would like to find a change of variables x + f i ( x ,  f ) ,  t +  f2(x, t )  that, while leaving (1) 
unchanged (except, perhaps, by an overall multiplication by a function) would simply 
transform the boundary conditions. Unfortunately, it is straightforward to show that 
the only change of this sort is x -f ax + b, t + a 2 t  

We now examine the general conditions necessary for this type of solution. We 
,"U& ,U1 SUI",LUI,D U, L l l C  lulluwlllg 1u1111. 
,-..,. I^_ --I... :--" ̂'-.L̂ '-..I, :-- r 

The function f takes into account the boundary conditions (for example we may choose 
g(t)='p(L(t)/Z) and require that f ( . t l )=O, for 'p odd, or  f ( l ) = O  for 'p even). 
Substituting (14) into (1) and demanding the cancellation of the terms containing f '  
leads to following equation for h ( x ,  t )  

where p = h f 2 m  and K is an arbitrary function of time. If, furthermore, 

where @ is function only of the ratio 'p(x)/g(f), thenf satisfies the equation 

f"(Y) + @ ( Y ) f  ( y )  = 0. 
Combining (15) and (16), one obtains, after some manipulations 

Here S(x) is the Schwarzian derivative of p(x)  

and 

d f  

is an arbitrary function of f. Equation (17) can also be expressed in differential form: 
application of the operator 



246 

to the right-hand side of (17) must yield zero. Equations (15) and ( 1 7 )  are necessary 
conditions for ansatz (14) to work. 

Using (14) we can find a third solution. If we assume rp(x)=x and choosing 
dK(f ) /d t  = -g’(f)/(2g(t)), for 

A Deooto and B PomoriSac 

with the help of equation (16) we find 

= JAAt + A$+ A I /&  

where A, ,  A, and A, are arbitrary constants. In this case the function f satisfies 

whose solution is 

Here Y denotes a Bessel function of the first or second kind ( J  or Y) or a Hankel 
function ( H “ ’  or H ( 2 ) ) .  The boundary condition requirementf(*l) = O  imposes some 
restrictions on the possible values of A, .  Then the wavefunction is given by 

where y = x / g ( t ) ,  g(f) is given by (18), and an overall normalization has been sup- 
pressed. 

We would like to emphasize that this is one of the rare cases in quantum mechanics 
where one can follow the time development of a system having a time-dependent 
Eamiltonian. Therefore one has the possibility of checking some of the standard 
methods (for example the adiabatic approximation) used when dealing with time- 
dependent problems. The infinite potential well studied here is used in nuclear physics 
[6] and in modelling white dwarf stars (see e.g. Bransden and Joachain [7]). Therefore 
we use the spherically symmetrical solution (equation (12)); and we investigate the 
limits of the adiabatic approximation when the radius of the potential well changes 
with time. (The analogous one dimensional well has been studied in [8 ] . )  

We compute the total probability of excitation (due to the change of the radius) 
for a system initially in.the ground state. Since this probability vanishes in the adiabatic 
approximation one has a quantitative estimate of its limits. 

At time f = 0 the radius of the well is r, = ato,  where (1 is the expansion velocity, 
and the system is in the state 

(21) 

which is the ground state of a spherical well ofconstant radius r,. To find the exact 
solution of the time-dependent Schrodinger equation at time f with initial condition 
(21) we expand the wavefunction in terms of 
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Here Rip' is a solution of type (12) with [=ll and 8 =p?rfi,"a, while p is an arbitrary 
positive integer. Thus the wavefunction at time f is 

m 

v ( r ,  t)= 1 ap(a)@)(r, 1 ) .  (23) 
p - t  

The expansion coefficients ap are given by 

The whole dependence of these coefficients on the parameters of the problem is 
contained in the dimensionless quantity 

When the size of the well is r,= a(f+t,), the amplitude of finding the system in 
the ground state of the expanded well is 

where * indicates complex conjugation and 

mar, 
P '2h , l  

We evaluated numerically A, for different values of the parameters a and p. In 
figures 1 and 2 we present the results for the probability of excitation: P = 1 - IAol', 
which vanishes in the adiabatic approximation, as a function of a and of P / a  = r,/r<. 
For the contracting well, as it can be seen from ( 2 6 ) ,  one can read the results from 
the same graphs by changing the sign of a and taking the inverse of p / a ;  for example, 
the contraction for a = -1  and r,/rj = 0.9 has the same probability of excitation as the 

0.8 

0.6 

0.4 

0.2 

0.0 

Figure 1. The probability of excitation for fixed n against r,/r,; full curve: oi =0.15, chain 
curve: 01 =0.10, broken curve: *=0.06. 
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Figure 2. The probability of excitation lor fixed v J r ,  against a; full curve: r,Jr, = 1.5, 
chain curve: r d r ,  =2.0, broken CUNC: r,Jr, =4.0. 

0 0 2  0 4  0.6 0.8 1 

expansion with a = +1 and rl/ri = 110.9. In the numerical evaluation we kept up  to 
fifty terms in the expansion of the wavefunction and we made sure that the sum of 
(uPp/' was equal to one to six significant figures. This also implies that for p = a the 
probability of excitation vanishes. 

As it can be seen from the figures, the adiabatic approximation is valid only for a 
limited range of the parameters. The adiabatic limit corresponds to a + 0, i.e. a, p + 0. 
In this limit, the asymptotic behaviour of A, is 

The sum in this equation has an upper limit 64(r2/12+&), hence the probability of 
excitation goes to zero as a' in the adiabatic limit. 

The dependence of the parameters a and p on the radius of the well is of interest. 
For example, for a nucleus of radius r = 5 fm and for a velocity a = O.Olc, the parameter 
a = 1 . 2 ~  i.e., for non-relativistic speeds the adiabatic approximation is very good 
for a wide range of r , /r , .  In contrast for a white dwarf of radius r = 104km, a in ms-' 
is: 1.25 x a ,  i.e. for any reasonable velocity 01 is very large and the adiabatic 
approximation is not applicable. In conclusion, the range of applicability of this 
approximation depends crucially on the radius of the system. 
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